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CHAPTER I

INTRODUCTION

Customary studies of acoustic bottom interation model the

sea floor as a series of flat, isotropic layers underlaid by a flat, semi-

infinite homogeneous isotropic substrate. However, it has always been

recognized that this model represents an extreme idealization of the actual

bottom environment.

The assumption of isotropy of sediments has always been known to

be incorrect on a microscopic scale. The mineral grains composing the

various sediments are inherently anisotropic. Acousticians have assumed

that because these anisotropic grains are randomly distributed, the sedi-

ment therefore presents overall isotropy.

Unfortunately, experimental evidence does not bear out this

assumption. Petroleum geophysicists have reported velocity anisotropies

from their well log data for many years and the work of the Deep Sea

Drilling Project (DSDP) has confirmed that velocity anisotropies do,

V ~ indeed, exist in marine sediments.

It is the purpose of this paper, therefore, to examine the causes

of velocity anisotropies in sediments and the properties of those sedi-

ments, and to develop the mathematical theory of reflection from such sedi-

ments. The particular mathematical framework which has been chosen is that

for transversely isotropic layers, that is, layers which have a single

-J• , • - , • 'L ' . . , ,. . . .. ,.2 ' ' u L 
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unique axis, and rotational synmetry about that axis. Propagation in

such a medium will be examined, and a parameterized version of a reflec-

tion coefficient model developed. The theory utilized in the work is

based on that of Stoneley. His derivation of the equation of motion is

followed and used as a basis for our derivation of the reflection

coefficient.

Chapter II of this work is a discussion of observed anisotropies

in marine sediments and the mechanisms considered responsible for such

anisotropies. The theoretical form of the reflection coefficient is

derived in Chapter III, and in Chapter IV the results of numerical cal-

culations in the formulation are compared with those of standard isotropic

theory.
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K CHAPTER II

OCCURRENCE AND CAUSES OF VELOCITY ANISOTROPY

The most commonly noticed anisotropy in marine sediments is an

excess of the parallel shear and compressional velocities over the veloci-

ties normal to the plane of bedding. Hamilton (1970) concludes from data

obtained by LeRoy (1950) and Uhrig and Van Melle (1955) that shale

exhibits an average anisotropy of horizontal over vertical velocities

of about 10%, though the excess may run as high as 40%.

Milholland, Manghnani, Schlanger, and Sutton (1980) state a

measure for this anisotropy,

A Vh Vv
V

where subscripts h and v refer to the directions parallel and normal,

respectively, to the plane of bedding, V refers to velocity, and super-

scripted bars refer to averages. This same formula produces shear and

compressional anisotropies, Ap and As s but it must be remembered that the

propagation of a shear wave along a given direction is also dependent up-

on its polarization. Six measurements must therefore be taken to char-

acterize V for shear waves, measurements along each axis being taken with

polarizations both parallel and perpendicular to the plane of bedding.

It is this definition of anisotropy which is used throughout this paper.

3



Milholland, Manghnani, Schlanger, and Sutton (1980) also define

a second parameter,

A Vso V

so

* which measures the anisotropy of horizontally propagating waves (first

Vsuperscript) with polarization (second superscript) parallel and normal

to the plane of bedding. This quantity is of more value than As from a

theoretical viewpoint, as it can be related to the elastic constants of

the sediment.

In oozes and chalks, Manghnani, Schlanger, and Milholland (1980)

report variations in compressional anisotropy from -4% to 8%, and varia-

tions in shear anisotropy from -8% to 6%. In carbonate limestones,

siliceous limestones, and chert below 1020 m they have determined the

compressional anisotropy to be 8% ±4%, and the shear anisotropy to be

In a later report from this same group of geophysicists

(Milholland et al., 1980), data from the DSDP is used to obtain a more

detailed picture of the velocity anisotropies of marine sediments. These

results are reproduced in Table I.

It is to be noted from Table I that carbonate limestones,

siliceous limestones, and cherts have similar velocity anisotropies. This

similarity would seem to imply that silica content does not contribute

significantly to velocity anisotropy. On the other hand, clay enrichment

of calcareous sediments increases velocity anisotropies, whereas non-

calcareous clays show a much smaller degree of anisotropy. Velocity

4
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TABLE I

REPRESENTATIVE VELOCITY ANISOTROPIES

FROM DSDP DATA

Ap As  Aso

Sites 288, 299 M)(

Carbonate Ooze 2.0

Carbonate Chalk 2.9 (3.3) 0.5 (4.7) 2.7 (4.2)

Carbonate Limestone 8.0 (4.7) 6.2 (4.9) 7.9 (4.7)

Siliceous Limestone 8.6 (3.7) 5.6 (3.4) 5.9 (4.0)

Chert 8.3 (2.3) 6.3 (2.0) 6.2 (3.7)

Basalt 2.5 (1.0)

A p A s  A so

Site 210 M M

Clay-bearing Ooze & Chalk 6.2 (1.4) 6.63 (3.7) 9.6 (4.5)

Clay-rich Chalk 6.8 (2.6) 14.2 (5.9) 9.2 (6.4)

Calcic-rich Chalk 8.1 (1.2) 17.4 (5.0 23.0 (5.6)

Non-calcareous Clay 3.3 (1.2) -0.4 (2.4) 12.2 (6.7)

The numbers in parentheses represent the standard deviation for the

corresponding sediment type.

51
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anisotropies in clay-bearing to clay-rich oozes and chalk are

approximately twice as large as in calcareous oozes and chalks. Further-

* more, shear anisotropies and shear orientation anisotropies tend to be

greater than compressional anisotropies for clay-bearing sediments, where-

as the compressional anisotropy is greater than the shear and shear orien-

tation velocities in more calcareous sediments.

Carlson and Christensen (1979) show that velocity anisotropies

are well developed at less than 0.4 km into the sediment and that aniso-

tropy increases markedly with depth (depth below sea level is not meant

here, but depth of overburden). Concurrent with this depth dependent

increase in anisotropies are related increases in anisotropy with

increasing density, and with increasing mean velocity.

Several different approaches have been taken toward finding a

physical mechanism which would explain the existence of transversely iso-

tropic sediments. Hamilton (1970) considered overburden pressure acting

upon clay as a cause of such a system. Since clay has a flocculated

(collapsed house of cards) structure, sufficient pressure should lead to

an ordering of the clay structure in which the platelets would assume

positions parallel to the plane of bedding. Hamilton realized, however,

that such a purely mechanical action upon clay could not produce the

observed anisotropies at depths shallower than 400-600 m, although a

measurable anisotropy would be produced at these depths. This explana-

tion of sediment velocity anisotropy has not proved very useful, however,

as it is geared to explain pure silt and clay sediments, which actually

show much smaller degrees of anisotropy than other sediments; a non-

calcareous clay from OSOP Site 210 shows a compressional anisotropy of

" 6
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3.3% and a shear anisotropy essentially zero, while a clay enriched

carbonate ooze and chalk from the same site shows a compressional

anisotrophy of 6.2% and a shear anisotrophy of 6.63%.

Carlson and Christensen (1979) proposed mechanisms for

explaining the larger velocity anisotropies in calcareous sediments. They

discounted the first mechanism, the alignment of cracks and pores in the

bedding plane, because it is known that pores and cracks close under

increasing pressure; this would cause the vertical velocity to increase

more rapidly than horizontal velocities with depth, an equality (isotropy)

eventually being reached. Since anisotropy increases with depth, this

mechanism cannot be the driving mechanism for transverse isotropy.

The second mechanism examined by Carlson and Christensen (1979)

seem to be the most adequate in explaining the observed phenomena. If

the calcite crystals in calcareous sediments have a preferred orientation,

anisotropies of the preferred type (i.e., transverse isotropy) would

result. Dandekar (1968) determined that calcite crystals exhibit a

velocity of 5.61 km/sec parallel to their c-axes, and a velocity of

7.35 km/sec normal to their c-axes (the c-axis is that direction along

which a ray of light is not doubly refracted). Therefore, if it could be

ascertained that calcite grains align their c-axes normal to the plane of

bedding, the observed anisotropies would be accounted for. Manghnani,

Schlanger, and Milholland (1980) reported that preliminary X-ray petro-

fabric data for carbonate sediment core samples from DSDP Site 289 show

such a preferential orientation of the calcite c-axes.

Carlson and Christensen (1979) and Manghnani, Schlanger, and

*" Milholland (1980) pointed out that calcareous deep sea sediments consist

7
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J almost exclusively of biogenic detritus. Prominent among the various

I detritus in calcareous sediments are various members of the genus Cocco-

lithus and the genus Cyclococcolithina, and discoasters. In these orga-

nisms, calcite crystals contained in the disc shaped skeletons are aligned

with their c-axes normal to the long dimensions of the microfossils.

Though these disc-like forms are randomly oriented in oozes, increasing

compaction leads to their alignment parallel with the plane of bedding,

leaving the calcite crystal c-axes normal to the plane of bedding.

This pressure induced alignment of c-axes is only the beginning

of the ordering of carbonate sediments, however. The diagenetic model of

Schlanger and Douglas (1974) posits that the major change in the trans-

formation of carbonate ooze to chalk to limestone is the solution and

reprecipitation of the carbonate as cement. Elimination of crystal

defects such as the presence of strontium, dissolution of small crystals,

and the growth of larger crystals reduce the free energy of the system.

Furthermore, Carlson and Christensen (1979), reporting from Bain (1940)

and Bukry (1971), conclude that calcite crystals with faces nearly per-

pendicular to the c-axes are more resistant to dissolution than those with

faces nearly parallel. Hence, those microforms most resistant to solution

are those which have their c-axes normal to their long dimension. In

other words, the process of solution and recrystallization in calcite

operates in such a manner that most calcite c-axes are normal to the

plane of bedding, thus producing a larger velocity of propagation parallel

to the bedding plane than normal to it.

Milholland, Manghnani, Schlanger, and Sutton (1980) believe

that the role of clay enrichment in increasing velocity anisotropy is

8



best explained by the mechanism proposed in Weyl (1952). According to

this model, clay particles, being much smaller and more plastic than the

calcite crystals, coat calcite grains with an ooze, reducing the point-

to-point contacts of crystals, and increasing the total reactive surface,

thus catalyzing the solution and recrystallization of calcite at a rate

more rapid than normal.

In summary, many measurements of anisotropy establish values of

0-15% with 10% being typical. Many mechanisms have been proposed to

account for such anisotropies, including pore and crack alignment, over-

burden pressure, and the alignment of calcite crystals. We conclude

that, while overburden pressure plays a minor role in determining veloc-

ity anisotropies, the principal cause of such anisotropies is the pre-

, sence of calcite crystals aligned with their c-axes normal to the plane

of bedding. The mechanism that best explains this is the deposition of

certain biogenic detritus and their subsequent dissolution and re-

crystallization with the proper alignment. The existence of such align-

ments has been confirmed experimentally.

2 9



CHAPTER III

THEORY OF REFLECTION FROM TRANSVERSELY ANISOTROPIC SOLIDS

From the data and geological models available, it is reasonable

to model an anisotropic sediment as a transversely isotropic solid, that

is, as a body containing a single unique axis, all rotations about the

axis being equivalent. This axis will be taken to be the z-axis, per-

jpendicular to the plane of bedding.

A. Independent Elastic Parameters for Transverse Isotropy

The first problem which arises from a departure from isotropy

is an increase in the number of independent elastic parameters of the

system. While an isotropic system has but two independent elastic param-

eters, a transversely anisotropic system has five. In obtaining these

constants, we shall follow the development of Love (1944), in a somewhat

more modern notation. If one begins from the stress-strain relation,

Hooke's Law,

Sij = Cijklekl

there are a total of 81 possible elastic parameters. Here Sij. ekl, and

Cijkl are the components of the stress, strain, and elastic tensors,

respectively, and repeated indices are summed over. However, a set of

equivalences,
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C ijkl C klij : jikl Cijlk

reduces the number of independent elastic parameters to 21 in the case of

complete anisotropy. The set of equivalences springs, respectively, from

the conditions that a thermodynamic internal energy exists, that the

stress Sij is symmetric, and that the strain ekl is symmetric under inter-

change of index.

To simplify the notation, the elements of these tensors are

identified with the components of a symmetric 6 x 6 matrix. The fol-

lowing associations of subscripts are made: xx=l, yy=2, zz=3, yz=4,

zx=5, xy=6. Thus, the stress-strain relation may be rewritten using

this notation as

SI = CIjeJ

To further reduce the number of independent elastic parameters,

let us utilize the strain-energy function, defined by the relation

S awaeI

As discussed in Love (1944) and Aki and Richards (1980) the actual quan-

tity chosen for W may be either the free energy or the internal energy,

depending upon whether conditions are isothermal or adiabatic. It is

standard in most texts to choose adiabatic conditions, since at

12



wavelengths greater than a few millimeters the thermal diffusion

:1 coefficient in sediments is much longer than the period of elastic waves.

2 Combining Hooke's Law with the defining relation for W, one obtains the

* I result:

2W C 1 e e~

Written in its entirety, this equation is:

21W = C 2 + 2Cee2+ 2C 13e 1 c3 +2C1e1e4C11 1  2 12 1e2 2 1 ee

+ 2C 15ele 5 + 2Cl6ele 6 + C 22 + 2C23e2e3

2+ 2C 24e 2 e4 + 2C 25 e2 e5 + 2C 26 e2e 6 + C 33e 3

22

+ 2C5e e5 + 2C6e e6 + C 5e 2

+ 2C56 e5e6 +C6e6

We now demand, for transverse anisotropy, that this quantity be invariant

under a rotation about the z-axis. Under a rotation of angle e about the

z-axis, the strains take the form

13



e1, = elcos2e + e2sln2a + e6sinecos

e2, = elsin2e + e cos2e - esincose

= e1  2 6

e e3

= e4cose - e sine

e5, = e4sine + e5cose

e6, =-2e1sinecose + 2e2 sinecos + e6(cos2e-sin2e)

where primes refer to the values of the strains in the rotated system.

If these substitutions are made into the strain-energy function

and coefficients of corresponding strain products are equated, a set of

21 equations is obtained. Fortunately, this set of equations can be par-

titioned into smaller subsets, corresponding to a partition of the set of

elastic parameters.

Consider the subset obtained by equating the coefficients of

the proaucts eIel, e2e2 , ele 2, ele 6, e2e6 , and e6e6, respectively:

C1l = Cllcos
4e + 2C12cos

2esin 2e - 4C16sinecos
3e

+ C 22sin4 e 4C26sin3ecose + 4C66sin 2ecose

14



C22  Cl sin46 + 2C12cos 2esin2a + 4C16sin 3ecose

I16
+ C22cos

4e + 4C26sinecos3e + 4C66sin 2ecos 2e ,

2 2 ~ 2 2 2 2

C2 = Cos2asin 0 + Cl2CSe+sin a) + 2Cl sinecose(cos e-sin20 )

+ C22sin 2ecos2a - 2C26 sinecose(cos 2-sin 2e) - 4C66 sin 2ecos 2e

C16 = Cllsinecos3e + C 2sinecose(sin 2 8-cos2) + C6(Cos 4e-3cos2esin 2 )

C22sin3 coso - C26 (sin 4e-3cos esin 2e) - 2C66sinecose(cos 2e-sin 2e)

C26 = Cllsin 3ecose + C12sinecose(cos
2e-sin2 ) - C 6 (sin24-3cos2esin2)

C22sinecos
3e + C26 (cos4e-3cos 2esin 2e) + 2C 66sinecose(cos 2e-sin 2e)

C66 = C11sin2 cos26 - 2C12sin 2ecos 2 + 4C16sinecose(cos2e-sin 2e)

+ C22sin2 cos2 - 4C26sinecose(cos 2e-sin 2e) + C66 (cos 2e-sin 2e)
2

Adding the fifth and sixth equations, then subtracting the second equation

from the first, and removing a factor of sine from both results yields

0 = (C11-C22)cose - 2(C16+C26)sine

0 = (Cll-C 22 )cose + 2(C16+C26)sine

15
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Solving for Cll-C22 and C16+C26 yields

iii cli = c22

C2 6 = C16

Substituting these results into the third and sixth equations and com-

bining like terms, one obtains

0 = 2C 11cos 2esin 2e - 2C 2sin 2ecos 2

2 2esn 2 2+ 4C16cosesine(cos e-sin 6) - 4C66sin ecos e

2.-2 .2 20 = 2Cllcos esin e - 2C12sin ecos e

2 2 2 2+ 8C16cosesine(cos e-sin e) - 4C66sin ecos e

On substituting these two equations, it is obvious that

C16 = C26 = 0

Making this substitution and removing a factor of 2cos2 sin2 , one

obtains

C66 = .1/2(CII-C 12 )

16



Let us next consider the second set of equations, obtained by

equating the coefficients by ele 3 , e2e3, and e3e6, respectively,

C13  C13Cos 2e + C23sin 2 - 2C36sinecose

C23 = C13sin 2a + C23cos 
2e + 2C36sinecose

C36 = C13sinecose - C23sinecose + C36 (cos e-sin 2)

Simplifying the first two equations yields

0 (C23-Ci3)sin 2e - 2C36sinecose

0 (C13-C23)cos 2e - 2C36sinecose

which are correct at sine=O or cose=0 only if

Cl3 = C23  ,

from which it follows

C36 = 0

The third set of equations, arising from equating coefficients

of e4e4, e4e5 , and e5e5, is

17
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C44 = C44cos
28 + 2C 45cosesine + C55sin 28

- C45 = C44cosesine + C45 (cos
2 - 28) + C55sinecos

-2 2.1 C55 = C44sin e - 2C sinecose + C55cos e
r-45

Simplifying the first two equations yields

0 = -C44sine + 2C45cose + C55sine

0 = -C44cose - 2C45sine + C55cose

which has a solution consistent with the third equation,

C44 = 55 ,

and

C45 = 0

The fourth set of equations, obtained from equating coefficients

by e3e4 and e3e5, is

C34 = C34cose + C35sine 9

18
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C35 = -C34sine + C35cose

Consistency at cose=O demands

C34 = C35 = 0

The fifth subset of equations yields no new information. The final sub-

set, obtained by equating coefficients by ele 4, ele 5, e2e4 , e2e5, e4e6,

and e5e6, yields:

C14 = C14cos
3e + C15sinecos 2e + C24sin 2Ocose

3 - . 2 .3+ C25sin e - 2C46sinecos 0 - 2C56sin ecose

C15  -Cl4sinocos e + Cl5Cos 3 - C24sin3 e

+ C25sin ecose + 2C46sin ecose - 2C56sinecos .

2 3 3
C24  Cl4sin ecose + Cl5sin e + C24cos e

+ C25sinocos 0 + 2C46sinecos e + 2C56sin ecose

C25 = -C14sin 3 + C15sin 2 ocose - C24sincos2e

25cose -2C 46sin2ecose + 2C56sinecos ,

19
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C46 = Cl4sinecos 2 + Clssin 2ecose - C24sinecos 2

.1

C25sin 2ecose + C46cos(cos2 -sin2) + C56sin2(cos2 -sin28 )

C56 = C14sin 2ecose + C15sinecos 26 + C24sin 2ecose

56 24 .5242

- C25sinecos2 - C46sine(cos 2e-sin 2e) + C56cose(cos 2e-sin 2)

At cose=O, the first, fourth, fifth, and sixth equations become

C 14 = C25

C25 = -C14

C46 = -C56

C56 = C46

which can be consistent only if

C14 = C25 = C56 = C46 = 0

At sino=cose=I/v, the first and fourth equations become

0=C 1 5 -C 24

0 =C5 + C2
0=15+ 24

20



which can be consistent only if

C15 = C2 4 = 0

Combining all these results, the strain-energy function may,

for transversely isotropic media, be written in terms of only five param-

eters (Cll, C12, C33, C13, C44 ), as

2W = C1 (e+e2) C33e3 + 2Cl 3(el+e 2)e3

^,2+2 26e
+ 2C 2ee 2 + C44(e4 +e5 ) + C e2

where C66 = I/2(Cll-Cl 2).

B. Equations of Motion for Transversely Isotropic Media

Reverting to our initial notation, the equation of motion may

be obtained from the potential energy via the stresses:

2 u-

p j
at 2 ax

where Si = aw/aeij, p is the density, the quantities ui are the com-

ponents of displacement, and t is the time. Substituting

e.. = au

ax
and

21
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2

e au. +u
i ax3  ax1

into the equations of motion, one obtains the set of equations

2jI
P u x l + Cl av + Cl3wl + C 1 .66a

at x 11 D 12 13 az

+ C +4

° ---- t2  - 44 (,az + TX ,°)+W

2 au av\ + 2 22 awP ax 66 ay a x )Iaj I1 ax 11 ay 13 azI

i.at In ore toatc amopy sia itiio1o2hs

+ a C av + aw
aoao teo(az ay)

a'w IC44(u+ 2+ 2C4at2 ax 44VT 3) ayI F T

+- a u +~ a + C awaz I 13k\ax ay) 33 az I

where u, v, w have been substituted for the components of the displace-

*1ment vectors ux2 u , . respectively.

In order to attach a bit more physical intuition to these

equations, let us examine waves whose propagation and polarization are

both along the coordinate axes.
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For an x-propagating (v=w=O) or a y-propagating (u=w=O)

compressional wave, the equations of motion reduce to

a2u : a2u
2 1l1 -2

at ax

or

a2v a2v
P 77 C11 -2 iat DY

This identifies Cll/p as the square of the horizontal compressional

velocity.

For a z-propagating (u=v=O) compressional wave, the equations

become

32w  a2u

at2  az2

This identifies C33/p as the square of the vertical compressional

velocity.

For shear waves which either propagate in, or are polarized in

the z direction, the differential equations reduce to
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@1 2u @2u

2 2

iP 2- C 4 4

C2  2  2 w
44w /aw + aw7

This identifies C44/P as the square of the shear velocity in the vertical

plane.

Shear waves which propagate in, and are polarized in, the plane

of bedding obey

2u 2u

P =C 66  y-"

at 66ay2

a2v C

p = c66 L-.
3t2  ax2

This identifies C66/p as the square of the shear velocity in the plane

of bedding.

In summary, four of the five independent elastic parameters of

an anisotropic medium may be associated with compressional and shear

velocities in axial directions, as follows:

LIZ
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= (C33/P)
1/2

p = lI

Cs = (C66/p)
I/2

Cs (C44/P)I12

where Cp CPx, Csxy, C now denote these velocities. The fifth

independent elastic parameter, C13 , does not appear directly, and its

evaluation requires an off-axial measurement and the use of a dispersion

relation. (See Podio et al., 1968.)

C. Plane Wave Solutions to the Equations of Motion

Let us now assume that no quantities in the differential

equations are dependent upon y. Under these conditions, the equation

for v completely decouples from the equations for u and w, which remain

coupled to one another. We complete the reduction to the vertical plane

by setting v=O. Subject to these restrictions, the differential equa-

tions become

P 2u  C a2u +C a 2u +a C 2 w2 11 2 244 2 13+44) zax

at ax az r

a w a2w +C a2w + ('C1+C a2u
44 2 33 2 13 44 azax

at, ax az

25

*1k

-4 t _ ... ... :; _ '



In the vertical plane, the constant C66 does not play a role,

as it appears only for motion entirely in the plane of bedding. There-

fore, our first important result is that shear anisotropy does not play

a role in the problem. The anisotropic properties of our tranversely

anisotropic medium affect motion only through the compressional anisotropy

and in the behavior of the constant Cl3.

Let us assume a plane wave form for the displacements,

(W) = (wo) exp(iqz+ik x xiwt)

where kx is the horizontal wave number, assumed from measurements

in water, q is the vertical wave number, still to be identified, and

is the angular frequency.

Substitution of this form into the equations of motion yields

-pW2 U0 = -Cllk U - C44q2uo - (C13+C44) kxqw o

* -pW2 w0 = -C44k W - C33q2Wo - (C13+C44) kxqu o

To simplify these equations, define

j = C1 3 + C44

T pw- C k11 x

26
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= 2- ~44 x

These substitutions yield

(T-C4  2 uo JqkxwO =0

(S-C 33 q w Jqkxuo =0

which have solution only if

(T-c44q2)s 33q2 - x~q

This consistency equation defines the allowed vertical wave numbers. It

is a quadratic in q 2, with solutions

*2= r + AP - 4C 33 C44TS

233 44

and

q2 42- - 4C 33 C44 TS
q2 =2C 33C44
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where

22
r 33 S 44 +Jk

Thus, the plane wave solution to the equations of motion has

two vertical waves allowed and takes the form

(=) exp(iqlz) + (w2 exp(iq 2z exp(ikxx-iwt)

In order to check this solution for the vertical wave number,

let us examine the isotropic limit by setting C11=C33=X+2u, C13=X, and

44=1, where x and P are the usual Lam4 parameters for isotropic media.

The wave numbers for the two allowed plane waves obtained by such a sub-

stitution are:

q (PW 2 _ uk 2)/Pi2 2

q 2 (P 2_(X+2v))/p

Thus the plane wave, in the isotropic case, becomes the familiar purely

compressional wave of velocity ((X+ 2u)/p) /2, and purely shear wave of

velocity (/p) 112 . Thus, ql is associated with a quasi-shear wave, while

q2 is associated with a quasi-compressional wave.

28



T7

This development has already revealed several points of

interest. The shear anisotropy does not enter the problem of the propaga-

tion of elastic waves in the vertical plane. The coupled wave equations

for the displacements differ from the isotropic equations only by having

Cl1 and C33 where the isotropic equations would have a single constant.

This difference is sufficient to prevent a useful separation in poten-

tials; that is, purely shear and compressional waves cannot be defined.

D. Reflection of a Plane Wave from an Anisotropic Solid

Now that the behavior of plane waves in a single infinite

medium has been examined, let us proceed to derive the reflection co-

efficient for plane waves from the fluid side incident upon the boundary

between a semi-infinite isotropic ocean and a semi-infinite, transversely

anisotropic, solid ocean floor. The coordinate system in which we shall

work is standard, the x-y plane being the boundary plane and the positive

z-axis extending down into the solid.

The standard boundary conditions apply; that is, vertical

displacement, vertical stress, and tangential stress are continuous

across the interface. Since the liquid layer cannot support shear waves,

the tangential stress must vanish at the interface. The boundary condi-

tions may then be written in the form:

-(l-R)ik ° = w1 + w2

(l+R)p 0 2 = iC33(qlw,+q 2w2) + iC13kx(ul+u 2 )

0 qlu1 + q2u2 + kx(w 1+w2)

29



where R is the reflection coefficient, P0 is the water density, and k is

the vertical wave number in the water. These equations correspond,

respectively, to continuity of vertical displacement, vertical stress,

and horizontal stress. There are five unknowns (R, ul , u2 , wi, w2 ), and

only three boundary equations. The equations of motion provide the

remaining two equations needed to solve for the unknowns. Through the

relations obtained before we have:

0 = (T-C44 q2)u I - Jkxqlwl

0 (S-C3 3q)w 2 - Jkxq2u2

The system of equations is now soluble, and the reflection coefficient

is given by the ratio of determinants:

- 3
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-k0 1 1 0 0

-iP 0 
2  C33qi C33q2  C13kx  C13kx

kx kx q q2

S-Jkq 0 T-C q2 0

0 0 S-C33q2 0 -Jk q2

33 2 x
R =

-ik°  1 1 0 0

iP0
2  C33q]  C33q2  Cl3kx  Cl3kx

kx kx q1 q2

S -Jkxq 0 T-C44q1 0

o 0 S-C33q2 0 -Jkxq2

Upon working the algebra entailed by these determinants, one obtains

A - B
R -+B

where

A ko[Jk-(q2-q)IC33 q2(T44q - CIAq(S-C33 q2

(cqq-c j k 2J-(S 2~T 2\t
\3312 13k xj 2k xq1 q2  kS-33q2)A44q1Jl
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and

On examining the isotropic media limit of this result (making

the same substitutions made in the reduction of the wave number), one

obtains

2  + 2 2 2  l2 ' 4

4k qlq2 + (kx-q')2 + Q s.)2

which is the usual form for the reflection coefficient found in Ewing,

Jardetsky, and Press (1957).

Thus, we have found that we can solve for the reflection

coefficient, applying standard matrix techniques to a system of equations

containing the standard boundary conditions and two additional equations

which our initial demand upon the form of the solution forced from the

differential equations. Our solution is somewhat complicated, but reduces

in the isotropic limit to a familiar form.

E. Reflection from a Layered Anisotropic Solid

The reflection coefficient having been obtained for two

semi-infinite media, the next step is to expand the theoretical frame-

work to include finite layers.
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In a finite layer, the displacements now include upward and

downward propagating plane waves and take the form

Ww w1 exp(iqlz) + w2 exp(-iq~z)

+ x*i z e p -q z

U w3 exp(iq~z) + u2 exp(-iq 2z)

u u1 exp(iq~z) + u4 exp(-iq~z

+ 3 epiz)+uep(q2z)

I from which we may obtain the normal stress

S z= i(C 13 k xu1+C 33 qlw) exp(iqlz)

+ i(C 13 k xu 2-C33 qw2) exp(-iqlz)

+ i(C13 kXu3 +C 33q2w3 ) exp(iq2z)

+ i(C 13k xu 4 -C33 q 2w4) exp(-iq 2z)

and the tangential stress

S = i C44 (kxwl+qlul) exp(iqlz)

+ i C 44(k xw 2 qlu2) exp(-iqlz)
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+ i C44 (kxw3+q2u3) exp(iq 2z)

+ i C44 (kxw 4 -q2u4) exp(-iq2z)

We also have available the relations between the vertical and

horizontal displacements which must be satisfied for the existence of a

plane wave solution. These relations are similar to those used earlier

to solve the problem of two semi-infinite media. They are:

0 = (T-C44 q2)u - JqlkxW

= (T-C4 4q )u 2 + JqlkxW2

o = q2) -Jk

(S-C3 3q) u3 - Jq 2kxu 3

o (-c 2q)u + Jq2k Xu4

These consistency relations can be used to eliminate the
horizontal displacements (ui) in terms of the vertical displacement in

the stresses Szz and Sxz. This done, we define a vector of quantities

which are continuous across an interface between two transversely

anisotropic solids.

w

Szz
Y=

zx

Lu
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This vector can now be written entirely in terms of the vertical

displacements (w.) by using a matrix format,

i13 x 1+"33q1  - 13k 1+ 33q1  i 13 x 2  33c) - 13 x 2  33q2)

Y= iG44 (kx+Xlql) ic 44 (kx+x lq) iC44 (kx+X2q2) iC 44(k x+X2q 2)

G 0 0 0 1

0 I/G 0 0

x

o 0 Q 0 w3

o 0 0 1/Q w 4

or Y=E D(z)B, where E is the first matrix, D(z) is the second matrix, and

B is the vector containing the vertical displacements. The quantities in

the matrices are:

G =exp(iq~z)

Q exp(iq z)

X Jqlkx/(T- C44q 2)1

x2 =(c 33q )/Jq kx

The vector Y has two interesting properties. First, it

embodies the solutions to the differential equations for plane wave
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motion in a transversely anisotropic media. It thus expresses the values

of displacement and stress at each point z within a layer. Stcond, it

contains only quantities that are continuous across the interface between

two solids.

Using these properties we can now develop the method for

computing the reflection coefficient of a plane wave in the ocean incident

upon a homogeneously layered, transversely isotropic ocean floor. Let

each layer be numbered rrom 1 to n with the ocean being layer 0 and the

semi-infinite substrate being layer n+l. At the top of the layer labeled

m, the depth dependent quantities are represented as Ym (0), and at the

bottom of the layer, as Ym (H m), where Hm is the thickness of the layer.

Thus, the continuity of the stress and displacement across the inter-

face between layers m and m+l is given by Y (0)=Y (H) orMr+1 m

Em+l Bm+l =ED(Hm)BM~lM~l m m m

This can be rewritten as

r-E EmD(Hm)Bm

where Em is the inverse of the matrix E

In the substrate layer, the fact that no further reflections

occur reduces the displacements to downward propagating plane waves only:

W - A1 exp(iqlz) + A2 exp(iq2z)

U = A3 exp(iqlz) + A4 exp(iq 2z)

36



The consistency relations which allow plane wave solutions are

(T-c44q')AI - kxqA 3

q 3

yielding, upon substitution into the definition of stress, the vector

1 1

(C33q+C 13k Xl (C33q2+C 13kxX 2)

-n+l = A+ A
. iC44 (kx+qlXl) ic44 (kx+q 2X2 )

i ! 1 X2

or

Y n+]= AIN + A2L

where N and L are the first and second vectors, respectively, in the

equation for Yn+l above, and

I

I (T-C44q 2)/Jkxq1

(S-C3 3q2)/Jkxq2
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Therefore, in terms of the amplitudes at the top of the first solid

3layer, the substrate stresses and displacements are

.. Yn~ A AN + A2L = mT(EmDm(Hm)El Yl(°)

~n+l A1 N+ 2L-m

-PB1

where P is the product matrix through which the unknown amplitudes in the

intermediate layers are eliminated.

In the top semi-infinite fluid layer, however, we have

-ik 0 (l-R)

S2(I+R)

Yo PO Yo +Yo R

00 0

where

-ik 0

2
yO 0 0oW

0

0

0

and

38
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ik0

2
y1

0
0

0

Since the fluid does not support tangential displacements, the transition

of the first interface is handled by writing

0

0
Yl (0)= Y +

0

U
0

where u0 is the unconstrained horizontal displacement at the top of the

first layer. Substituting for Y1 (O) in the equation for Yn+l yields the

system of linear equations which must be solved to obtain the reflection

coefficient

AIN + A2 L- PYIR- P.4U= PY 0

where P.4 is the fourth column of the matrix P. As there are only four

unknown quantities in this relation (Al, A2, R, uo0), a solution may be

obtained via any number of standard methods for linear equations.

Thus, we have established a method by which the reflection

coefficient can be obtained for a system containing an arbitrary number

39
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of layers in which the unknown displacement amplitude of intermediate

layers do not appear. This method differs from that for isotropic

layers in that equations relating to displacement amplitude obtained from

the differential equations must be used to reduce the matrices to a form

in which the movement from one layer to another can be handled by a sim-

ple multiplication of matrices. The evaluation of the formal solution is

obviously a matter for the computer.

*4I
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CHAPTER IV

PROPERTIES OF THE REFLECTION COEFFICIENTS

In our computation of reflection coefficients we have utilized

a standard environment. The semi-infinite layer in which the plane

waves originate is water, with a sound speed of 1550 m/sec and a density

of 1.043 g/cm3 . The underlying solid layers have elastic parameters

which are discussed below. Our computations have been made at a standard

frequency of 50 Hz.

The primary difficulty in obtaining meaningful results from

the theory developed above lies in the paucity of published data on

values for the elastic parameters. We have located, to date, only three

full sets of elastic parameters. The earliest were obtained from Podio

et al. (1968), and are recapitulated in Tables II and III. These two

samples correspond, respectively, to compressional anisotropies (computed

according to the formula in Chapter II) of 2.81% and 3.89%. The latest

set of parameters were obtained by Jones and Wang (1981) for cretaceous

shales from the Williston Basin, and are recapitulated in Table IV.

This set of parameters corresponds to a compressional anisotropy of

20.6%. Thus, while our samples are few, nevertheless realms of both

high and of low anisotropy are represented.

In Section IV.A, we discuss the effects sediment anisotropy

has on the vertical wave number, and note the possibility of backward

41
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I
1TABLE II

ANISOTROPIC ELASTIC PARAMETERS FOR GREEN RIVER SHALE,

MEASURED UNDER 8000 psi CONFINING PRESSURE*

Shale Density 2.35 g/cm
3

Value Velocity

Parameter (kbars) (m/sec)

C11  476 4500

C33  450 4243

-- C44  154 2556

C13  170 2690

*Data from Podio et al. (1968)

4

I
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TABLE III

ANISOTROPIC ELASTIC PARAMETERS FOR GREEN RIVER SHALE,

MEASURED UNDER 1000 psi CONFINING PRESSURE*

Shale Density 2.35 g/cm
3

Value Velocity
Parameter (kbars) (m/sec)

C11  441 4332

C33  408 4167

.1 C44  132 2370

C13  143 2467

Data from Podio et al. (1968)

-I

43

_ . . . . * . ,."



TABLE IV

ANISOTROPIC ELASTIC PARAMETERS FOR

WILLISTON BASIN CRETACEOUS SHALE

3Shale Density 2.42 g/cm

Value Velocity

Parameter (kbars) (m/sec)

C1  343 3765

C33  227 3063

C4  54 1494

C13  107 2103

Data from Jones and Wang (1981)

*I
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traveling phase fronts. Section IV.B deals with the effects of

anisotropy on reflection from hard sediments. In Section IV.C a scheme to

approximate the constant C13 is considered, and in Section IV.D, the

effects of anisotropy on reflection from soft sediments is examined.

A. Effects of Anisotropy on Wave Numbers

Since the vertical wave numbers ql and q2 only reduce to their

normal form in the limit of isotropy, it is of interest to observe

their behavior for the transversely anisotropic media before proceeding

to the computation of the surface reflection coefficient.

Plots in the complex plane of q, and q2 for Green River Shale

under 8000 psi confining pressure are contained in Fig. 1. In this

figure, solid lines represent regions of overlays of q, and q2, dotted

lines represent q, only, and dashed lines represent q2 only; the grazing

angles are marked for reference. Recall that q, is the quasi-shear ver-
2

tical wave number and q is the quasi-compressional vertical wave number,

based on their behavior in the isotropic limit. Figure I shows that, as

in the isotropic case, each wave number has a purely real part cor-

responding to transmission into the sediment and a purely imaginary part

corresponding to total reflection from the sediment. The total reflec-

tion occurs due to velocities in sediment being greater than that in

water. The anisotropic case also has a region at very low grazing angle

(in this case up to 100) in which the vertical wave numbers are neither

purely real nor purely imaginary. This region does not occur for iso-

tropic media. In this range q2 is approximately equal to -q*,.

The existence of negative values for the real part of the

vertical wave number q, indicates that in this range there are backward

45
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rIr

traveling phase fronts, i.e., phase fronts traveling toward the interface

from the solid side. As will be discussed below, this quirk of the ver-

tical wave number does not affect the reflection coefficient.

The off-axis complex vertical wave numbers occurred for input

data in which the velocity contrast between media was very high. For

Green River shale at 1000 psi confining pressure, the region in which the

vertical wave numbers are neither purely real nor purely imaginary becomes

much shorter, and for Williston Basin shale, which has no zone of total

reflection, it vanishes altogether. Thus, such a phenomenon would most

likely occur in an oceanic environment of exposed basalts or hard sedi-

ments rather than in the normal gradual layering from ooze to hard sedi-

ments to basalt.

Two important results appear from this study of the vertical

wave number. First, in hard sediments we may see, at low grazing angles,

wave numbers which represent propagating but heavily damped waves. Sec-

ond, waves of this type, which corresponds to a quasi-shear wave, will

be propagated backwards, towards the interface.

B. Effects of Anisotropy on Fluid-Solid Interface Reflection
Coefficient

In computing the surface reflection coefficient R, we will find

that measured anisotropies produce observable changes in both the magni-

tude and phase of R when compared to the isotropic case. We will compute

bottom loss curves for such surfaces, where BL = -20 loglo JRI. The

sediments studied here are those for which full sets of anisotropic

parameters have been measured, i.e., the shales described in Tables II-

IV. These materials do not correspond to the soft, unconsolidated
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material found over much of the ocean floor, but are more typical of

exposed basalt and outcropping sedimentary rocks.

In Figs. 2-7, we compare computations of bottom loss and the

phase of the reflection coefficient for isotropic and anisotropic con-

solidated sediments. On each figure solid curves represent isotropic

computations, and dashed curves represent anisotropic curves. Figures 2

and 3 show bottom loss and phase of the reflection coefficient, respec-

tively, for a Green River shale under 8000 psi confining pressure;

Figs. 4 and 5 show these quantities for a Green River shale under

1000 psi confining pressure; and Figs. 6 and 7 show the same for a

Williston Basin shale.

For the high velocity Green River shales (see Figs. 2-5), the

realm of total reflection (below 530 for the shale of Figs. 2 and 3 and

below 490 for that of Figs. 4 and 5) remains unchanged by the addition

of anisotropy. The greatest change in bottom loss, Figs. 2 and 4, occurs

in the range of angle intermediate between the critical angles associated

with the two wave numbers. The critical angles are defined as the angles

at which the associated vertical wave numbers change from being purely

imaginary to being purely real, i.e., the angle above which the wave

propagates into the solid. That angle associated with the quasi-shear

wave number q, is the first (smallest) critical angle, and the angle

associated with the quasi-compressional wave number q2 is the second

(larger) critical angle. Between the two wave numbers, anisotropic bot-

tom loss differs from isotropic bottom loss by about 0.2 dB, and a

prominent (1 dB) lowering of bottom Toss occurs at the second critical

angle (about 700), probably due to a sampling error related to
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1° increments used in computation. Furthermore, note that the location
of this critical angle is shifted by almost 20

The change in the phase of the reflection coefficient is about

2' for the first of these shales (Fig. 3), and 7' for the second shale

(Fig. 5) near the second critical angles, becoming much less away from

these angles.

For the Williston Basin shale (Fig. 6), however, there is no

range of total reflection since the shear velocity is smaller than the

water sound speed. The anisotropy changes bottom loss for this case at

angles from zero to second critical angle (670). Of most interest, how-

ever, is a marked decrease in bottom loss of about 2 dB at low grazing

angles. The shift in the second critical angle is much more pronounced

here, approximately 80.

Drastic effects are to be seen in the phase for the Williston

Basin shale (Fig. 7). The phase of the reflection coefficient for the

anisotropic shale differs from that for the isotropic shale by as much

as 1200 below a grazing angle of 67'. The two become practically

indistinguishable above this grazing angle.

In this section we have shown that transverse anisotropy yields

nontrivial differences in bottom loss and the phase of the reflection

coefficient when compared to the same quantities in isotropic sediments.

The curves are not qualitatively different, and most of the effects seem

attributable to the distortion in the curves due to a shift in the posi-

tion of the critical angle for quasi-compressional waves. The differ-

ences in bottom loss amount to as little as a few tenths of decibels

for low anisotropy sediments (Green River shale), to as much as 3.5 dB
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-f for a moderately high anisotropy sediment (Williston shale). Phase

differences range from 20 for low anisotropy sediments to as much as

1200 for high anisotropy sediments.

C. Parameter Studies on the Constant Cl3

One problem in our analysis has been a lack of measurements of

the constant C13 . The determination of C13 requires the use of the dis-

persion relation or consistency equation for the differential equation,

and a measurement of the speed of one of the wave solutions to the dif-

* ferential equations in some specified non-axial direction. This non-

axial measurement is not normally made. Furthermore, a certain modicum

of error in Cl3 is bound to result in its computation from the dispersion

relation, the components of which are experimentally determined.

Until measurements become readily available, it is of interest

to consider how good an approximation might be made of the actual value

of this elastic parameter. In this section we develop a means for esti-

mating C13 for consolidated (hard) sediments for which the compressional

wave anisotropy is measured.

A parameterization of the constant C13 must have two properties.

It must reduce to the isotropic value in some simple limit, and it must

be simpler in form than the dispersion relation.

In this isotropic limit C13 reduces to x, i.e.,

C C 2C 2 2 )

C13 = C33 - 2C44 = (pz-2Cs)P

Let us parameterize C13 as
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C13 = 8 v-H-3- 2C44

This reduces to the isotropic limit when B=l and C1 =C33. The parameter

B is then defined by the relation

C13 + 2C44

SVCIC33

If we divide out density from the defining equation for a, and

express the result in terms of shear and compressional velocities, we

obtain the relation

( 2 Cp c

where al is of order unity and relates C13 to C44, while a2 is the con-

stant of proportionality relating Cl1 to C33.

Experimentally obtained values for C13 (Tables II-IV) show

that C13 is of the order of C44 for mildly anisotropic sediments or is

some small multiple of C44 for strongly isotropic sediments, i.e., al is

of magnitude one or two. The Williston Basin shale has C13 approximately

equal to twice C44 . Likewise, the term i'Ci1C33 will always be greater

than C33 for transverse isotropy. A measured anisotropy, of 100%, com-

puted according to the definitions of Chapter 11, would yield
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411 3C33

Therefore, we safely consider that l<Q 2<
3 . Thus, the values of a, and

a2, which are the values most likely to occur in marine sediments, and

the fact that cs<c demand that 8<1.
s p

Let us then vary 8 from its actual computed values for the

sediments available to us until we reach o=1, in order to determine pre-

cisely to what extent inaccuracy in 8 affects the reflection coeffi-

cients. Fortunately, in all cases, the greatest effect of variation of

a occurs in the vicinity of the second critical angle. For the Green

River shales the bottom loss curves (see Figs. 8 and 9) are undisturbed

below the quasi-shear critical angles. Near the quasi-compressional

critical angle (-700), the bottom loss curves are gradually displaced

to a maximum of about 0.3 dB (in Fig. 8).

Beyond the quasi-shear critical angles, phases of the

reflection coefficient show displacements for these low anisotropy shales

similar to those they encounter in a total reduction to isotropy; about

l for the lowest anisotropy shale and about 50 for the higher anisotropy

shale. We omit graphs of these phases, as the curves so overlay one

another as to be indistinguishable.

In the case of the Green River shale, where there is no region

of total reflection, bottom loss at the lower grazing angle is affected

less than 0.1 dB (see Fig. 10), even though phenomena near the critical

angle for quasi-compressional waves are displaced by approximately

0.5 dB in the full reduction to 8=1. However, the region of lower

grazing angles where greatest effect of anisotropy occurred is not

5B
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changed as a is varied. The phases of the reflection coefficient for

this shale also show very little disturbance as is reduced to one

(Fig. 11). The total disturbance in phase over the whole range of angles

is 50 in the worst case.

Thus we have seen that variations in the parameter a lead to

small scale variations in bottom loss in the region of the critical angle

for quasi-compressional waves. Changes in the phase of the reflection

coefficient are also small. Thus we may safely make the approximation

o=l, for consolidated sediments. For hard sediments, therefore, no

great loss in precision occurs in using the approximation

C13 = 33 - 2C44

D. Effects of Anisotropy on Reflection from a Typical Marine Sediment

The preceding sections dealt with hard sediments in which the

densities and the compressional and shear velocities were high. In

typical near-surface silt-clay sediment, the compressional velocity will

be lower than that of the water, and the shear velocity will be of an

order of magnitude less than the compressional velocity. It is of inter-

est to determine whether bottom loss curves for soft sediments are

affected in the same manner that they are for hard sediments.

If we use a water velocity of 1550 m/sec and a water density of

1.043 g/cm , we may use the ratio of sediment compressional velocity to

2 water compressional velocity of 0.98 given in Bachman (1979) to obtain a

sediment compressional velocity of 1520 m/sec. Use uf the velocity
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density curve given in Hamilton (1978) yields a sediment density of

1.65 g/cm We use a shear velocity of 115 m/sec (Hamilton, 1976).
-.1i At this point a difficulty in interpretation arises. Is the
-'I.

sediment compressional velocity obtained from this ratio a vertical

velocity, a horizontal velocity, or some sort of mean velocity? Since

Bachman provides no answer to this question, we will compute bottom loss

curves for each of the three possibilities: c =v C, cCpz and

c=c . The precise distribution of velocity between horizontal and

vertical is obtained via the regression formula of Bachman (1979) for

silt-clays, Vv = 0.25 + 0.83 Vh, where V represents compressional veloc-

ity in units of km/sec and subscripts v and h denote vertical and hori-

zontal directions, respectively. Bottom loss for the isotropic case is

computed as a reference. A summary of these four distributions of veloc-

ity is contained in Table V.

With this information we can compute the elastic parameters:

= c 2  9

C33 c P
p z

2

C44 = cs P

where p is the density, c px is the horizontal compressional velocity,

Cpz is the vertical compressional velocity, and cs is the shear velocity.

However, this is not enough information to compute the parameter C13.
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TABLE V

POSSIBLE INTERPRETATIONS OF CALCULATED COMPRESSIONAL VELOCITY

FOR ANISOTROPIC AND ISOTROPIC SEDIMENTS

C C

cPX Pz
(m/sec) (misec) (m/sec)

Mean

C =r F- 1520 1525 1515
pX Pzp

Verti cal

cpc P 1520 1530 1520

Horizontal

IC = C 1520 1520 1512
p p

IIsotropic 1520 1520 1520
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Let us therefore utilize the parameterization of C13 obtained in Section

IV.C, and set

C13 = 8 ,'CIIC 13 - 2C44

For hard sed',lents it was determined that we could safely set a=l. This

proves nothing for soft sediments, however, since the magnitude of a for

soft sediments is not known. Therefore, bottom loss curves will be com-

puted at various values of B to determine the effect of anisotropy and

the sensitivity to a.

In Fig. 12 we see bottom loss computed at B=l for the four

distributions of velocity outlined in Table V. The principal effect of

the transverse anisotropy has been an increase in bottom loss near the

angle of intromission where the peak in bottom loss occurs. The actual

value of bottom loss at the angle of intromission is not significant due

to increments used in computation. The various assignments of the values

of compressional velocities lead to a scatter over about 3' of the loca-

tion of the angle of intromission. The assignment cp=cpx leads to an

angle of intromission identical with that for the isotropic case. The

other assignments, cp=vpCpx and c ,=c, lead to shifts in the position

of angle of intromission of 20 and 30, respectively.

In Fig. 13 we see bottom loss computed at 8=0.75 for the four

distributions of velocity outlined in Table V. The cluster of values of

the angle of intromission has displaced about 6° from the angle of intro-

mission for an isotropic sediment. This displacement of the angle of

intromission has so displaced the curve that in the range of grazing angle

66

Akei i i i



60-

50 -I op acp,

Io 40-~. ISOTROPIC

0

* 10 -

0 10 20 30 40 50 60 70 so 90
GRAZING ANGLE - dog

FIGURE 12
BOTTOM LOSS FROM SOFT SILT-CLAY SEDIMENT; BETA-I

ARL:UT

67 AS-82-695
5-10-82



70

60- - C =

-- -p =-pz

ISOTROPIC

* ~40

0

20-

10-

0
0 10 20 30 40 50 60 70 s0 90

GRAZING ANGLE - deg

FIGURE 13
BOTTOM LOSS FROM SOFT SILT-CLAY SEDIMENT; BETA =0.75

ARL:UT
68 AS-82-898

5-10-82



from 5' to 700 the difference in bottom loss varies over the range from

I dB (at the endpoints of the range of grazing angle) to 55 dB at the

new angle of intromission, and is of the order of 10 dB over large

reaches of grazing angle.

In Fig. 14, the bottom loss has been computed at a=0.5 for the

four distributions of velocity outlined in Table V. The angle of

intromission has shifted even further, now approximately 25' beyond that

for an isotropic sediment, and differences in bottom loss similar to

those discussed in the preceding paragraph are now spread over the range

of grazing angles from 00 to 80'.

At this point enough of a trend has been established to assert

that the location of the angle of intromission is very sensitive to the

value of the parameter a. If, however, this parameter is of the order

obtained for hard sediments, i.e., somewhere between 0.7 and 1.0, and

closer to 1.0 for less anisotropic sediments, the approximation o=l

obtained in Section IV.C should hold. The final verdict on this point

must obviously await the actual measurement of the elastic parameter C13

for soft sediments.
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CHAPTER V

CONCLUSIONS

Previous mathematical formulations of the problem of reflection

from the sea floor have assumed that the sea floor is an isotropic

solid. It was always known, however, that this was at best an approxima-

tion. Recent geological studies, summarized above, have led to the view

that the sea floor can be better modeled as a transversely isotropic

solid.

The equations of motion for transversely isotropic media

depend on five elastic parameters rather than two. For motion in only

the vertical plane, one of these elastic parameters has no effect. The

elimination of this one parameter, however, also eliminates considera-

tion of shear anisotropy, as only a single shear velocity occurs in the

equations of motion for the vertical plane. Shear anisotropy is impor-

tant only for motion entirely within a horizontal plane.

The assumption of plane wave solutions to the equations of

motion yields an equation of consistency leading to two solutions for

the vertical wave number. One corresponds to quasi-compressional motion,

and the other to quasi-shear motion. An examination of the vertical wave

number shows that it is possible, in environments of velocity contrast

sufficient to have realms of total reflection, to have backward

traveling phase fronts.
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Using standard boundary conditions, we solve for the reflection

coefficient between two semi-infinite media, and set up the system of

equations for layered media in a form amenable to computer solution. We

show that the reflection coefficient does reduce, in the isotropic limit,

to the usual form.

Studies of reflection from consolidated anisotropic sediments

using available sets of parameters were presented. These show that

velocity anisotropy alters bottom loss significantly, particularly in

sediments for which the velocity contrast is such that the region of

total reflection vanishes, or is greatly curtailed. The degree of bot-

tom loss change from isotropy appears to be an increasing function of

anisotropy, and even for fairly moderate anisotropies is large enough to

measure. In highly anisotropic consolidated sediments, the deviation

from isotropic bottom loss amounts to 1 dB over a wide range of low

grazing angles, and in all cases the position of the critical angle for

compressional waves is shifted more than 10.

The principal bar to calculating meaningful results on the

effect of anisotropy lies in the fact that few full sets of elastic

parameters have been measured. We have shown, however, that this

deficiency can be obviated for consolidated sediments by using measured

compressional wave anisotropy to approximate the elastic parameter Cl3

(which is rarely measured). The approximation is especially good if low

grazing angle phenomena are of greater concern than those of high grazing

angle.

For soft (unconsolidated) sediments we have estimated full sets

of elastic parameters and calculated bottom loss. If, as in the case of
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hard sediments, a low anisotropy sediment corresponds to a value of the

parameter C13 very close to its value in the isotropic limit, the

approximation discussed above is valid for soft sediments, and the prin-

cipal effect of anisotropy in soft (silt-clay) sediments is a small

shift (1-30) in the angle of intromission. If this is not true, we have

shown that bottom loss is very sensitive to the value of 8. Obviously,

more information is needed on the actual value of the constant C13 in

soft sediments.

In the work completed so far, we have shown that compressional

anisotropy has significant effects on both bottom loss and the phase of

the reflection coefficient for both consolidated and unconsolidated sedi-

ments. The course of future work in this topic seems obvious. The

assumption of isovelocity layers must be abandoned and standard linear

gradients in velocity adopted. This would include refraction phenomena

known to be important in isotropic media. The computational tools

already stand in such form that the effect of anisotropy on energy

absorption can be taken into account. Additional work may also be done

on a topic totally excluded from this paper, that of surface (interface)

waves.

.1!
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